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ABSTRACT

The Retinex is an image enhancement algorithm that
improves the brightness, contrast and sharpness of
an image. It performs a non-linear spatial/spectral
transform that provides simultaneous dynamic range
compression and color constancy. It has been used
for a wide variety of applications ranging from avi-
ation safety to general purpose photography. Many
potential applications require the use of Retinex pro-
cessing at video frame rates. This is difficult to
achieve with general purpose processors because the
algorithm contains a large number of complex com-
putations and data transfers. In addition, many of
these applications also constrain the potential archi-
tectures to embedded processors to save power, weight
and cost. Thus we have focused on digital signal pro-
cessors (DSPs) and field programmable gate arrays
(FPGAs) as potential solutions for real-time Retinex
processing. In previous efforts we attained a 21 (full)
frame per second (fps) processing rate for the single-
scale monochromatic Retinex with a TMS320C6711
DSP operating at 150 MHz. This was achieved af-
ter several significant code improvements and opti-
mizations. Since then we have migrated our design
to the slightly more powerful TMS320C6713 DSP and
the fixed point TMS320DM642 DSP. In this paper we
briefly discuss the Retinex algorithm, the performance
of the algorithm executing on the TMS320C6713 and
the TMS320DM642, and compare the results with the
TMS320C6711.
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1. INTRODUCTION

The Retinex is a general purpose image enhance-
ment algorithm that is used to improve the contrast,
brightness and perceived sharpness of images primar-
ily through dynamic range compression. The algo-

rithm also simultaneously provides color constant out-
put thus it removes the effects caused by different il-
luminants on a scene. It synthesizes contrast enhance-
ment and color constancy by performing a non-linear
spatial/spectral transform that mimics traits seen in
the human vision system. The original algorithm is
based on a model of human vision’s lightness and color
constancy developed by Edward Land.1 Jobson et
al. extended the last version of Land’s model2, 3 and
have since added several improvements to the original
version of the Retinex including the use of multiple
scales,3 color restoration,3 and post-processing using
white balance.4

The unique enhancement achieved by the Retinex
lends the algorithm to numerous applications. The al-
gorithm has been successfully applied to imagery from
diverse fields such as medical radiography, underwater
photography, and forensic investigations. It is being
used to process visible and infrared imagery acquired
to produce enhanced vision systems (EVS) for aviation
safety,5 and it is used to improve imagery obtained
from unmanned aerial vehicles (UAV)s. Figure 1 is
an example of a Retinex processed image for aviation
safety. It is being studied for potential use in X-ray
systems to improve homeland security. A large ma-
jority of consumer level photographs also benefit from

Figure 1. Original image of a runway on the left; Retinex
enhanced image on the right. Note the improvement in
visibility of the runway and surrounding areas.



Retinex processing and the algorithm is offered in the
commercially available software package PhotoFlair by
TruView Imaging and as an Adobe Photoshop plug-
in.6

Computation of the Retinex algorithm involves per-
forming a large number of complex operations and data
transfers. For individual, smaller format images, stan-
dard general purpose computers provide sufficient pro-
cessing power and reasonable performance. To apply
the algorithm to images acquired at real-time video
data rates of 15 to 30 frames per second (fps) requires
the substantial increase in processing speed afforded by
hardware performance. In addition, several potential
applications limit the hardware solutions to low-power,
low cost, embedded systems.

Several dedicated architectures and technologies ex-
ist that are potentially, a good fit for real-time Retinex
processing. In our current implementation we have
targeted digital signal processors (DSPs), in particular
the Texas Instruments TMS320C6711, TMS320C6713
floating point processors and the DM642 fixed point
processor. DSPs are inexpensive, relative easy to pro-
gram and offer good performance for real-time appli-
cations. In addition they have specialized instructions,
such as multiply-accumulate or bit reversal, and fast
data transfer paths and mechanisms that facilitate high
bandwidth image processing.

We recently developed the first near real-time digi-
tal implementation of the single-scale monochromatic
Retinex.7 A video frame rate of 21 fps was attained
using a 150 MHz TI TMS320C6711 DSP evaluation
module (DSK) with full-frame (256× 256) processing.
Standard NTSC video with a frame size of 640 × 480
was captured, scaled and to 320 × 240, Retinex pro-
cessed as a 256 × 256 image, and finally displayed on
a standard VGA monitor. Video capture and display
was performed on a daughter-card that interfaced to
the C6711 evaluation DSK. Both the original and the
Retinex processed images were displayed on the output
for performance assessment and demonstration pur-
poses.

The next stage of real-time Retinex processing is to
increase the performance closer to 30 fps. The frame
rate of 21 fps was only achieved after several significant
code improvements and optimizations on the C6711
DSP.7 This includes using 2-dimensional Direct Mem-
ory Access (DMA) transfers to improve column ac-
cess of image data, merging algorithm components to
maintain cache coherency, using cache-optimized FFT
routines found in the DSP Library, and using double

buffering schemes to overlap processing time with data
transfer times.

It may be theoretically possible to slightly increase
performance to greater than 21 fps on the C6711 by
performing optimizations such as writing all of the code
in hand-optimized assembly, using more in-line func-
tions, or unrolling more loops by hand, but the ben-
efit gained is minimal for the effort required. Thus
to increase performance we have migrated are design
to the slightly more powerful TMS320C6713 DSP and
the fixed point TMS320DM642. We will now briefly
describe the equations behind the Retinex algorithm,
give an overview of the three processors, describe the
testing environment, and discuss the results obtained
for each processor.

2. RETINEX

The Retinex is a member of the class of center surround
functions where each output value of the function is
determined by the corresponding input value (center)
and its neighborhood (surround). For the Retinex the
center is defined as each pixel value and the surround
is a Gaussian function. The mathematical form of the
single-scale Retinex (ssr) is given by

R(x1, x2) =

α
(
log(I(x1, x2))− log(I(x1, x2) ∗ F (x1, x2))

)− β

where I is the input image, R is the Retinex output
image, log is the natural logarithm function, α is a
scaling (gain) factor and β is an offset parameter. The
“∗” symbol represents convolution. F is a Gaussian
filter (surround or kernel) defined by

F (x1, x2) = κ exp[−(x2
1 + x2

2)/σ2]

where σ is the standard deviation of the filter and con-
trols the amount of spatial detail that is retained, and κ
is a normalization factor that keeps the area under the
Gaussian curve equal to 1. The α, β and σ parameters
are determined empirically.

As is easily observed from the Retinex equation,
the tallest processing pole is the convolution opera-
tion. Large Gaussian kernels, typically with σ ranging
from 50 to 120, are normally used to produce good
single-scale Retinex performance, thus spatial domain
convolution would be extremely time consuming. We
naturally turn to the well-known equivalence between
convolution in the spatial domain and multiplication
in the spatial-frequency domain8, 9

f(x, y) ∗ g(x, y) ⇔ F (µ, ν)G(µ, ν)



where F and G are the spatial frequency domain rep-
resentations of f and g respectively. We employ the
2-dimensional M × N forward and inverse Discrete
Fourier Transforms (DFT),9

F(µ, ν) =

1
MN

M−1∑
x=0

N−1∑
x=0

f(x, y) exp[−j2π(µx/M + νy/N)]

f(x, y) =
M−1∑
µ=0

N−1∑
ν=0

F(µ, ν) exp[j2π(µx/M + νy/N)],

to rewrite the Retinex equation as:

R(x1, x2) =

α(log(I(x1, x2))− log[F−1(I ′(µ, ν)F ′(µ, ν))])− β,

where I ′(µ, ν) and F ′(µ, ν) represent the DFTs of
I(x1, x2) and F (x1, x2) respectively, and F−1 repre-
sents the inverse DFT. The DFTs are computed using
the well known Fast Fourier Transform (FFTs)8 and by
processing the 2-dimensional image transform by ap-
plying 1-dimensional FFTs first to the rows, and then
to the columns of the image. DSPs are known for there
ability to rapidly compute FFTs and the associated bit
reversal required so this efficiency maps well into the
equation above.

3. PROCESSORS

We consider three TI DSPs for Retinex computa-
tion: the TMS320C6711, the TMS320C6713 and the
TMS320DM642. The TMS320C6711 (C6711) DSP is
a 32-bit floating point processor that performs up to
1200 million instructions per second (MIPS)/900 mil-
lion floating point operations per second (MFLOPs) at
a clock rate of 150 MHz (6.67 ns instruction cycle time).
It is based on the advanced very-long-instruction-word
(VLIW)10 architecture developed by TI. A block dia-
gram of the processor is shown in Figure 2.

The processor is divided into three main compo-
nents: the CPU (or core), memory, and peripherals.
Details on registers, functional units and peripher-
als have been discussed previously.7, 10, 11 Note that
the internal processor memory consists of a two-level
cache12 where the Level-1 program cache (L1P) is 4-
KBytes and direct mapped and the Level-1 data cache
(L1D) is 4-KBytes and 2-way set associative. The
Level-2 (L2) memory is 64-KBytes and can be con-
figured as local SRAM, cache or combinations of the
two in 16-KByte increments.

The TMS320C6713 (C6713) is a 32-bit floating
point processor that performs up to 1800 MIPS/1350
MFLOPS at a clock rate of 225 MHz (4.4 ns instruc-
tion cycle time). The processor architecture is very
similar to the C6711 and code operating on one de-
vice should directly port over to the other. The pri-
mary differences in the two devices are outlined in TI
reports.13, 14 In particular, the C6713 has an extra
192-KBytes of SRAM in the L2 memory. This in-
creases the total size of the L2 memory to 256-KBytes
of which 64-KBytes can serve as cache or SRAM. The
C6713 also has programmable event mapping for its
16 EDMA channels. Also, relevant to this discussion
is the addition of a software-configurable Phase-Lock
Loop (PLL) controller on the C6713 that provides dif-
ferent clock frequencies for the DSP core, peripherals
and the external memory interface (EMIF).
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Figure 2. Basic 67x DSP Components: CPU, L1 Data and
Program Caches, L2 memory (SRAM/Cache) and Periph-
erals
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The TMS320DM642 (DM642) is based on the same
advanced VLIW architecture as the C6711 and C6713
but is structured differently than the other two pro-
cessors. The DM642 is a 32-bit fixed-point processor
that provides up to 4800 MIPS at a clock rate of 600
MHz (1.67 ns instruction cycle time). A block diagram
of the processor is shown in Figure 3. Details on the
processor can be found in TI reference papers.15 We
note in particular that the DM642 also has a two-level
cache where the L1P is 16-KBytes and direct mapped,
and the L1D is 16-KBytes and 2-way set associative.
The L2 memory is 256-KBytes and can be configured
as local SRAM, cache or combinations of the two in
16-KByte increments. The DM642 is in the family of
TI’s digital media processors where several media ports
are built directly onto the chip. This includes three
configurable video ports that can support either video
capture and/or video display modes.

4. TEST ENVIRONMENT

Each of the DSPs is placed on an evaluation mod-
ule called DSK for the C6711 and C6713, and EVM
for the DM642. The C6711 DSK has 16-MBytes of
100 MHz SDRAM, peripheral connectors for daughter-
board support and various ports and controllers.16

The C6713 DSK is configured similarly except that it
has 8-MBytes of SDRAM clocked at a default rate of
90 MHz. The DM642 EVM has 32-MBytes of SDRAM
clocked at 133 MHz. There are also two video decoders
and one video encoder to interface to the video ports of
the chip and expansion connectors on the EVM board.
The EVM communicates to a host computer through
an external emulator via a JTAG connector. For the
C6711 and C6713, video capture, display, and data for-
matting are performed by an imaging daughter-card
(IDC).17 The IDC contains an NTSC/PAL digital
video decoder chip, an NTSC/PAL digital video en-
coder chip, a Xilinx FPGA and 16-Mbits of SDRAM
for frame capture. The data formatting and buffering
mechanisms performed by the IDC are described in TI
reference documents.18

The test-bed for real-time Retinex video processing
on the C6711 or C6713 consists of a camera, a moni-
tor, the associated DSK, the IDC, a host PC and the
associated software tools. The setup is the same for
the DM642, except the IDC is not needed since the
video ports are included on the chip and EVM. The
camera generates NTSC/PAL composite video that is
fed into the daughter-card/EVM. The RGB output of
the daughter-card/EVM is fed into the CRT moni-
tor for display. The host PC is a standard Pentium

Imaging
NTSC Camera Monitor

Host PC

DSK 6711

Daughtercard

Figure 4. Test-bed — The PC only provides setup infor-
mation to the DSK/DSP; after initiation, the DSP executes
autonomously

PC and is only used for code development and de-
bugging. It is not part of the image processing chain.
Figure 4 is an general outline of the system. The TI
Code Composer Studio (CCS) tools are used for soft-
ware development. This includes a C-compiler, assem-
bler/optimizer, and a debugger for visibility into source
code execution. A chip support library (CSL)19 is used
to configure and control on-chip peripherals and a DSP
library (DSPLib)20 is used to provide optimized FFTs.

General operation of the test-bed system is as fol-
lows. C code to perform the Retinex algorithm is writ-
ten on the host PC. This code is compiled, assembled
and linked into a common object file format (COFF)
and downloaded from the host into the DSK/EVM. Ex-
ecution of the algorithm is then initiated from the host.
From this point on, the DSK/EVM operates indepen-
dently of the host. The DSK, through the IDC, or the
EVM captures video frames from the camera and re-
samples/averages the 640× 480 pixel input image into
a 320 × 240 sized image. This image is then cropped
and padded to 256×256 pixels, Retinex processed and
displayed adjacent to the unprocessed image for com-
parison. The final resizing to 256×256 is used to meet
the power of two input size requirements of the FFT.

5. RESULTS

In previous efforts, we attained a 20.7 fps processing
rate for the single-scale monochromatic Retinex exe-
cuting on the C6711 operating at 150 MHz. To im-
prove and compare performance we mapped the same
code that executes on the C6711 onto the C6713. Con-
sidering the similarity in architectures this should pro-
vide a near linear increase in performance relative to
the increase in clock speeds between the devices. Thus
the performance should improve by 1.5 (225/150) so
the expected performance should be close to 31 fps.



Figure 5. Expected DSP Performance based on MIPS for
executing the Retinex Algorithm. Image size is 256× 256

Figure 6. Actual Performance for the C6713 and DM642
was limited due to EMIF bandwidth.

Figure 5 shows the expected increase. Super-linear in-
creases theoretically should be obtained because of the
larger L2 memory, but all of the smaller buffers in the
current implementation already reside in the 64-KByte
L2 cache and the extra 192-KBytes of the C6713 are
not enough to move any of the larger buffers into on-
chip memory. After porting the code and moving the
IDC from the C6711 to the C6713 the algorithm exe-
cuted successfully. Figure 6 shows the actual increase
in performance. The increase obtained is sub-linear
due to the slower EMIF clock used for the SDRAMs of
the C6713. The C6711 DSK uses a 100 MHz clock for
the SDRAMS while the C6713 DSK uses at 90 MHz
clock for the SDRAM thus limiting the data transfer
rate between external memory and internal memory.

Next, we ported the Retinex algorithm to the DM642
platform. The DM642 uses different image capture and
display drivers, DMA transfer buffers, and FFT algo-
rithms than the C6711, but the core of the algorithm

remains the same. Comparing DM642 MIPS with the
C6711 shows a potential 4x increase in performance as
seen in Figure 5. This does not take into account other
factors that affect performance such as EMIF bus rates
or the extra computations to handle fixed point arith-
metic. Fixed-point arithmetic limits the dynamic range
of the DM642 to 231−1, while numbers are represented
to an accuracy of 0.5 × 2−32 assuming Q0.31 format.
For some portions of the algorithm the dynamic range
is sufficient. For example, the input to a 256 point
radix-4 FFT is processed in 4-stages where each stage
gives 2 bits of growth. Our 8-bit input will then only
grow to a maximum of 16 bits for one forward trans-
form. Since we are generating a 2-dimensional Fourier
Transform, a second 256-point FFT is also performed
on the data. This increases the growth to 32 bits which
still fits in a 32-bit integer data type. But this data is
then further processed by the algorithm. The largest
numbers from the FFT operation are on the order of
108. The smallest numbers from the normalized spa-
tial frequency Gaussian function are truncated at 10−6.
Significant digits beyond this are truncated without af-
fecting image quality. Thus we must process values on
the order of 1014 well beyond the capability of 32-bit
fixed point representation.

As a test case initially a floating point implemen-
tation of the Retinex algorithm was executed on the
DM642 since the TI C compiler is able to automatically
convert floating point operations, albeit very slowly. A
data rate of 14.9 fps was achieved. After carefully bal-
ancing scaling and truncation tradeoffs a fixed point
version of the algorithm was implemented. A process-
ing rate of 30.31 fps was achieved. The limiting factor
in performance is again the EMIF bus. With a faster
processor, our algorithm performance is now driven by
data transfer rates between external memory and inter-
nal memory exacerbated by the column access required
for the 2-dimensional FFT. The default EMIF bus rate
is set 133 MHz. We were able to update this bus rate to
a maximum of 200 MHz by strapping the appropriate
resistors onto the EVM module and changing memory
access parameters. This increased performance to 34.1
fps as shown in Figure 6.

6. CONCLUSIONS

We have ported the Retinex algorithm that operates at
20.7 fps on a 150 MHz C6711 platform to a 225 MHz
C6713 platform. Video images were captured using
a NTSC camera and imaging daughter-card, single-
scale, grayscale Retinex processed, and displayed us-
ing a standard VGA monitor. We obtained good (28



fps) but sub-linear performance from the C6713 plat-
form due to the lower clock frequency used for external
memory.

We also mapped the Retinex algorithm to the
DM642 platform. The maximum performance ob-
tained was 34.1 fps. This surpasses the real-time re-
quirement of 30 fps. Again we found that the perfor-
mance was primarily limited by data transfer bottle-
neck created by the EMIF bus. After using the DSP
platforms, our next goal is to map the algorithm to a
multi-FPGA system. The multiple processors in this
system should provide the hardware performance re-
quired to achieve multiple scale, color Retinex pro-
cessing and possibly multiple camera input process-
ing. The reconfigurability of this system will give us
a means to effectively tune the architecture for differ-
ent application requirements. We also wish to consider
platforms that will meet the needs for future space mis-
sions.
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